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1. Introduction 

1.1. Purpose and scope 

The purpose of the Use Case Definition document is to provide a practical 
overview of how traceability can be applied in Earth observation data workflows. 
It demonstrates this through two complementary use cases, one domain-specific 
(agriculture) and one general (AI/ML), to highlight critical requirements for 
tracking data and model processes.  

In particular, the document aims to: 

● Demonstrate applicability - show how traceability works in both specific 
and general AI/ML contexts. 

● Highlight critical requirements - emphasize systematic tracking of input 
data, metadata, and model lifecycle. 

● Ensure reproducibility and trustworthiness - enable validation and reliable 
comparison of results. 

● Provide a future-proof reference - present a solution resilient to 
technological changes and vendor lock-in. 

By offering a vendor-independent approach, the document supports 
reproducibility, transparency, and long-term trustworthiness of AI applications in 
Earth observation. 

 

1.2. Structure of the document 

The document consists of the following chapters. 

● Introduction – this section provides an introduction and a summary of 
what will be presented in the document. It also includes requirements 
related to the implementation of activities and references the baseline 
documents on which this work is based. 

● Potential Use Cases for EO Data Provenance - This chapter presents two 
use cases in the context of traceability. The first one is domain-specific but 
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broadly refers to typical machine learning workflows. The second one 
addresses AI data and models in a more generic way. Within this chapter, 
the selection of these use cases is explained, also taking into account 
feedback from potential stakeholders. It presents which data will be traced 
and describes the processes by which traceability was applied by the users. 

● Conclusion – contains the conclusion. 
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2. Potential Use Cases for EO Data 
Provenance 

2.1. Use Case: Forecasting Cereal Yields Using 
Traceability combined with Sentinel and 
Meteorological Data 
Traceability in agriculture is increasingly important for optimizing resources, 
improving productivity, and ensuring food security under climate change. Earth 
Observation (EO) data from the European Space Agency (ESA) Sentinel satellites 
provides high-resolution, multi-spectral imagery that enables detailed monitoring 
of crop growth and environmental conditions. When combined with 
meteorological data, these inputs support reliable crop yield forecasting by 
offering a continuous, verifiable record of the factors influencing productivity. 

Such traceable workflows enhance transparency and credibility, as every step of 
the forecasting process can be verified, ensuring that results are based on reliable 
EO and weather data. This not only aids government agencies in policy-making 
and funding decisions but also gives farmers confidence in the recommendations 
provided. 

Additionally, traceability improves risk management by documenting extreme 
events, such as droughts or pest outbreaks, which helps validate insurance claims 
and strengthens trust between insurers and farmers. The approach is also highly 
scalable, allowing forecasting systems to be adapted to new regions, crops, or 
technologies while maintaining methodological integrity, enabling consistent 
application by both local agencies and multinational companies. 

By integrating EO data, traceability, and advanced analytics, this use case fosters 
resilience, transparency, and sustainability in agricultural systems, while laying the 
groundwork for future innovations in data-driven farming. 

2.1.1. Use case identification 

The crop yield forecasting use case was developed through a multi-step process. 
Insights from Earth Observation conferences highlighted the sector’s demand for 
reliable, data-driven yield prediction, while feedback from clients and stakeholders 
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revealed the specific needs of agricultural agencies. The project team’s expertise 
in EO and agriculture allowed them to refine potential applications, and 
consultations with institutions such as the Joint Research Centre (JRC) and the 
Polish Space Agency (POLSA) confirmed the high relevance of yield forecasting 
for operational users. Based on these inputs, crop yield forecasting was chosen as 
a priority use case, and its methodology, particularly in data processing, is 
designed to be transferable to other EO-based applications beyond agriculture.  

2.1.2. Introduction and overall view 

Accurate and timely yield forecasts are critical for food policy, agricultural 
planning, and government decision-making. Machine and deep learning 
approaches, combined with EO data and meteorological indicators, allow for more 
precise and frequent forecasts. 

In this use case, a forecasting workflow will be demonstrated for selected NUTS-
2 regions in the European Union, using freely available datasets. Key inputs 
include: 

● Vegetation indices from Sentinel-3 OLCI (optical) and SLSTR (thermal), 
● Agro-meteorological data from ERA-5, 
● Crop yield statistics from Eurostat. 

The trained machine learning models will produce yield predictions for specific 
crops in the selected regions. Importantly, the approach is designed to be 
transferable, allowing application to other crops and geographic areas. 

2.1.3. Methods 

The solution will be built based on machine learning algorithms that leverage data 
fusion of satellite and climate reanalysis data including: daily vegetation condition 
indicators provided by Sentinel-3 OLCI (optical) and SLSTR (thermal) imagery, as 
well as air temperature, total precipitation, surface radiation, and soil moisture 
derived from ERA-5 Land climate reanalysis generated by the European Centre 
for Medium-Range Weather Forecasts (ECMWF). 

The reference data for the crop yield forecasting model will consist of official yield 
statistics provided by Eurostat at NUTS-2 level database and EuroCrops, which is 
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a dataset linking all publicly available crop reporting datasets from European 
Union countries. Due to the varying availability of yield data and crop locations 
across EU countries, NUTS-2 regions with complete information on agricultural 
production culture and typical land use characteristics will be selected for this use 
case. 

The crop yield forecasting algorithm will be based on thermal time (growing 
degree days derived from ERA-5 data) to more accurately track the crop 
development stages. The predictors will be extracted and calculated based on 
vector locations of the types of crop types from the EuroCrops database. These 
predictors will include the following variables transformed to thermal time at 
several growing degree day (GDD) levels serving as a proxy for crop development 
stage: total precipitation, soil moisture, surface radiation, air temperature, 
Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index 
(VCI), Land Surface Temperature (LST), Temperature Condition Index (TCI), all 
based on GDD, as well as the maximum NDVI during the growing season.   
Primarily NDVI computed from Sentinel-3 data will be applied to the model. 
However, given its higher spatial resolution and capability to more accurately 
determine the state of vegetation growth, NDVI derived from Sentinel-2 data will 
also be tested. Moreover, analyses of plant growth conditions during the season 
will be calculated based on air temperature-based growing degree day (GDD). 

A fusion of satellite data with agrometeorological information will be then 
implemented to serve as input to the machine learning model. Based on multi-
year yield reference data for selected crops in NUTS-2 units, along with multi-
year predictors, machine learning model training will be conducted to develop a 
yield forecasting model for each region. During the training process, the recursive 
feature elimination will be used to derive an optimal set of yield predictors for 
each administrative unit, which will ultimately be employed by the Extreme 
Gradient Boosting regressor to forecast yields using official yield statistics as a 
reference. The model will predict crop yields and generate the final outputs 
(tabular, graphical maps), which can be used for dashboard visualization and time 
series analyses to determine the variability of yields by year for selected crop 
types in NUTS-2 regions. In addition, crop growth conditions based on thermal 
time will be determined for each selected region along with the most important 
predictor variables. Model validation will be performed using a cross-validation 
method with a leave-one-year-out approach and the model's prediction accuracy 
metrics will be calculated. 
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2.1.4. Data 

A comprehensive list of input data used in the system, including satellite, 
agrometeorological, and ancillary materials: 

● Satellite data: 
○ Sentinel-3 (300 m) NDVI, TCI, VCI, 
○ Sentinel-3 (1000 m) LS; 

● Climate reanalysis ERA5-Land hourly data: 
○ 2m air temperature, 
○ Total precipitation, 
○ Surface solar radiation downwards, 
○ Volumetric soil water layer 1 (0-7 cm) and 2 (7-28 cm) ; 

● Crop production related data: 
○ Statistical regions NUTS-2 (nomenclature of territorial units for 

statistics) polygon vector, 
○ EuroCrops vector database for delineation of extent and 

distribution of agricultural fields with a specific crop type, 
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○ Crop production information: Eurostat - Crop production in EU 
standard humidity by NUTS 2 regions - database. 

2.1.5. Explanation and Development of Traceability in the Context 
of the Use Case 

Why is this important? 

● In agricultural planning, yield forecasts directly influence food security 
policies, economic strategies, and operational decisions. Errors in 
forecasting can lead to economic and logistical challenges. 

● In terms of EU policies, yield forecasting could serve as a basis for subsidies 
and other agricultural financing across countries. 

Regarding the points above, it is necessary to provide a reliable and consistent 
system that allows for verification at each stage of activity. In this respect: 

● Traceability ensures compliance with scientific and regulatory standards, 
fostering trust in the predictions. 

● It allows practitioners to revisit and refine the process in response to audits, 
disputes, or evolving needs. 

What needs to be tracked? 

Input Data 

● Identifiers of Sentinel-3 images (e.g., file name, acquisition date, orbit, 
baseline). 

● Image metadata (e.g.: observation angle, processing level, spatial 
resolution, calibration information). 

● Meteorological data (e.g.: source, acquisition time, resolution, model 
version used for computation). 

● Eurostat yield statistics by NUTS-2 region (e.g.: name, reporting year, 
update frequency) 

● EuroCrops database (e.g.: vector file identifiers, attributes) 
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Processing Parameters 

● Algorithms and configurations used for processing satellite data (e.g., NDVI 
calculation formula, thresholds for VCI or TCI). 

● Parameters for data fusion, such as spatial interpolation of ERA-5 data to 
match Sentinel-3 resolutions. 

● Transformation of variables (e.g., conversion of climatic variables to 
thermal time using GDD calculations). 

Indices 

● Mathematical formulas for vegetation indices (e.g., NDVI = (NIR - Red) / 
(NIR + Red)) and GDD. 

● Parameters for growing degree day (GDD)-based transformations of soil 
moisture, precipitation, and radiation. 

● Selection and calibration of predictors for each NUTS-2 region. 

Predictive Model 

● Model type (e.g.: Extreme Gradient Boosting (XGBoost) regressor). 
● Training data (e.g. Multi-year crop yield statistics and corresponding 

predictors for the selected regions). 
● Hyperparameters and configurations (e.g., learning rate, tree depth). 
● Validation metrics (e.g.: RMSE) 

Intermediate Results 

● Every processing stage should be documented (e.g., soil moisture maps, 
NDVI time series). 

● Validation results (model accuracy, confusion matrix). 

User Decisions 

● If users manually adjust algorithms or interpret results, these decisions 
should also be logged. 
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Auditing Predictive Processes 

Auditing predictive processes allows for detailed examination of how and why 
specific forecasts were generated. This ensures the ability to answer questions 
like: 

● Where did the input data come from? 
● What processing steps were applied to the data? 
● Why did the model produce this particular forecast? 

2.1.6. Summary of stakeholders meetings 

Discussions with potential users confirmed both the relevance and the broader 
applicability of the traceability approach. While JRC emphasized the critical 
importance of metadata traceability for ensuring reproducibility of results, POLSA 
highlighted the need for practical tools to verify the quality and credibility of 
delivered products. Both institutions see strong potential for applying the 
methodology beyond agriculture, underlining its transferability and scalability. 

JRC 

● Traceability of input data identified as the most challenging and critical 
aspect (frequent changes in algorithms, baselines, and methods for Sentinel 
data). 
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● Need to distinguish between the input data layer and the model/user 
activities layer ("human layer"). 

● Ensuring reproducibility requires accounting for differences in baselines 
and processing versions (e.g., verifying forecasts months later when input 
data have been reprocessed). 

● Managing evolving metadata in input datasets is a fundamental 
requirement. 

● These challenges affect not only agriculture but all EO-based use cases. 

POLSA 

● Strong interest in traceability as a key recipient of agricultural maps and 
layers. 

● Concern about discrepancies between declared and actual product 
accuracy; manual verification is too time-consuming. 

● High interest in testing the approach on a specific use case, with emphasis 
on transferability to other cases. 

● Key requirement: verification of input data and model details (parameters, 
hyperparameters) provided by contractors. 

● Transferability: methodology applicable to processes beyond 
agriculture (input → indicators → ML model → results). 

● Scalability: desirable to scale analysis to national level, or alternatively 
validate random 10–20% of the surface area. 

2.1.7. User story (Audit example) 

As a European agricultural policy maker, researcher, or farmer, 

I want crop yield information that is fully traceable and verifiable throughout the 
data collection, processing, and modeling workflow, 

So that I can rely on the forecasts for decision-making, policy design, subsidy 
allocation, and operational planning, knowing that the data and results are 
accurate, reproducible, and free from unintended manipulation. 

Acceptance Criteria: 
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● All input data sources, versions, and processing steps are recorded and 
auditable. 

● Machine learning models used for yield prediction are fully documented, 
including parameters, training data, and validation metrics. 

● Results and published outputs (maps, statistics) can be traced back to their 
original inputs and processing steps. 

● The workflow is adaptable to different regions, crops, or EO-based 
applications while maintaining methodological integrity. 

Traceability in crop yield forecasting ensures that data, models, and results are 
fully verifiable, improving trust, reproducibility, and decision-making for policy 
makers, researchers, and farmers. The presented workflow is a scalable and 
adaptable framework that can be applied to other EO-based applications, 
supporting reliable, high-quality information across different regions and crops. 
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2.2 Traceability for AI Modelling 

2.2.1 The needs and benefits of Traceability in AI 

In order to comply with AI users and the related Regulation, Traceability has now 
become a de facto necessary tool in order to comply with AI’s act in particular on 
the Quality, Documentation and Preparation process of the input Data or input 
Models (in the case of model refinement), not to forget on the Explainability need 
which requires to be able to relate its inferences with its training material. 

As per a Traceability Service, we could then summarize the rationale of the needs 
and expected outcomes according to the following families: 

Trust and Transparency: 

Trusting an AI model calls for transparency and traceability of its inputs. From a 
quality point of view, self-declaration of an AI model provider cannot comply with 
a transparency need, hence this service has to be provided by a 3rd party, acting 
independently from the AI provider. 

Quality and Genuineness Assessment 

In a world where AI models are becoming an obvious and daily tool, leveraging 
services,  a natural question for the consumers of those services will be about the 
genuineness of those models, in particular about the input data used, in order to 
know which of them come from an authenticated source, or which of them are 
the result of synthetic processings from initial data or even which of them are the 
result of generative AI used to increase the training population of data. 

Expected outcomes and value : 

Ethics and Fairness of an AI model are currently natural and obvious concerns, 
being partly addressed by Traceability. It shall be noted that, from the 
considerations above, as Traceability can contribute to Quality assessment of an 
AI model, it has an indirect impact on the economic viability of AI-based services. 

Indeed, Quality concerns might become also of economical importance as a 
differentiator between several usages derived from different AI models. 

We can imagine that in the near future, Traceability information might yield or 
contribute to a Quality ranking of AI models, hence having an important role in 
scoring the underlying services, making it a marketing and pricing argument. 
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2.2.2 About Dataionics and Traceability :  

About Dataionics  

Dataionics is a newly created startup, aiming at offering seamless and federated 
access to satellite imagery for data consumers, particularly for AI training use 
cases involving large geospatial datasets. 

In addition to delivering raw or preprocessed imagery, Dataionics proposes a 
traceability service dedicated to the input data used in AI model development. 
This service allows AI model providers to rely on an external and trustworthy 
Traceability Manifest describing: 

● the full list of input data used (IDs, origin, date, location, processing history), 
● and any transformation pipeline applied prior to model training. 

Such traceability is not only valuable for transparency and quality control—it is 
increasingly a regulatory requirement. The European AI Act, especially Articles 10, 
12, and 13, mandates that providers of high-risk AI systems and foundation 
models: 

● document the origin, characteristics and processing of training datasets; 
 

● maintain logbooks of training and inference activities; 
 

● and enable external auditability of the data sources involved. 

To meet these needs, Dataionics positions itself as a neutral Recording Entity: a 
third-party infrastructure component collecting and recording the data lineage of 
satellite imagery used in AI workflows. This ensures that the provenance, 
structure, and usage of each dataset can be proven at any time—independently of 
the AI model provider—and exported through standardized formats to support 
regulatory compliance, model validation, or risk mitigation. 

By combining sovereign access to spatial data with continuous metadata logging, 
Dataionics helps organizations align with the AI Act’s data governance 
requirements while strengthening trust in Earth Observation-based AI systems. 
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Typical user for Dataionics : 

A user of Dataionics can be a data/AI consumer, or a data/AI provider. 

He can either use the Traceability Service according 2 modes, with a different role: 

● As a Traceability Contributor, in Declaration mode, to Provide traceability 
information about : 

● Every piece of imagery (full image or tiles) he is using for further 
image processing or to train or specialize an AI model 

● An already existing Model (like a Foundation Models for instance), 
he is using as a base for further refinement  

● As a Traceability Inquirer, in Query Mode, to Request traceability 
information related to : 

● 1 to N images,  
● 1 to N tiles from a given Image 
● An existing AI model 
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2.2.3 Requirements 

Note: The following requirements are expressed from the point of view of a 
typical User of Dataionics, as a Traceability Contributor or as a Traceability 
Enquirer:  

User needs in Declaration Mode: 

At any time, a user shall be able to declare to the Traceability 1 or N inputs by 
stating for each input: 

● an ID,  
○ for an image or a model 
○ optionally, when the declared data is a tile, its footprint within the 

original image 
● data traceability elements like: 

○ geographical footprint (for an image or a tile) 
○ date of creation,  
○ date of acquisition (for an image or a tile) 
○ Data Origin, describing the Data Provider 
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○ Licensing conditions (Licensing name, URL of the IP owner, …) 
○ Storage Location (URL, Coordinates or Country Name of the 

physical location of the hosting servers) 
○ Applicable Regulation (e.g Cloud Act, EU AI Act, …) 

User needs in Query Mode: 

● In Query Mode, the Traceability shall be requestable thanks to either : 

○ an AI model Id 

○ a single image Id, optionally completed by list of tile bounding box 

within that image , and expressed in geographical coordinates 

○ a list of Image Id, with their own optional list of tile bounding boxes 

● in Query mode, the Traceability Service shall return, for every contributing 

input Data from their previous step of traceability :  

○ the ID of data 

○ Details about the owner and authors if applicable 

○ Date of the data generation 

○ Storage origin and current location. 

○ If it is an image :  

■ Acquisition date, geographical location, sensor, provider 

■ Processing levels and transformations applied 

○ If it is a tile from an image : details about its encompassing image 

and frame, its processing steps 

○ If the Data is a model : its own traceability record 

Filtering the results of the Query Mode: 

When performing a Query to the Traceability Service thanks to the Query Mode, 
it shall be possible to reduce the outputs by filtering theme thanks to : 

● a Time Range. 
● a Geographical Area of Interest 

 in order to scope the spatial coverage of the data used (e.g., bounding 
box, region code). 

● a Data Origin, by specifying for instance a Data Provider 
● a Licensing conditions (Licensing name, URL of the IP owner, …) 
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● a Storage Location (URL, Coordinates or Country Name of the physical 
location of the hosting servers) 

● an Applicable Regulation (e.g Cloud Act, EU AI Act, …) 

Output Formatting 

The outputs of a request to the Query Mode shall be made available in 
standardized and downloadable formats, including : 

● JSON → For integration in automated systems 
 

● CSV → For analysis in spreadsheets or databases 

Each output should be timestamped and carry a unique query ID for 
reproducibility and audit trail. 

Missing or Partial Records Handling 

● If no traceability information exists for a given image or model ID, return a 
clear message, stating that no records were found. 

● If only partial information exists (e.g., missing metadata), return a clear 
message, stating that only partial records were found, along with the 
available fields and indicate missing ones by tagging them as null or 
undefined. 

Access, Interface & Performance 

● Access to the Traceability Service shall be provided through: 

○ A secure, authenticated REST API 

○ A lightweight Graphical User Interface (GUI) for testing and demo 

● The Traceability Service shall provide Export formats: JSON, CSV, Dump 

● Both in Declaration and Query mode, the Traceability Service must 

respond to queries with the following latency guarantees: 

● instantly for queries involving 1 entries 
●  < 5 seconds for typical queries involving ≤ 1,000 

entries 

● ≤ 1 hour for heavy queries involving ≥ 1 million 
records, or requiring deep federation scans 
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● Service status  
○ At any time, a service health-check endpoint should return live 

information on the service availability and uptime. 
 

2.2.4 Typical scenario and expected outcomes 

Note: The following scenarios are subject to further change, from additional 
requirements found necessary or any technical constraint raised by the 
Engineering team. 

Data Declaration Scenario 

Based on the usage of a Dataionics user, a 1st scenario would be about Querying 
a Trace Record, as follow : 

1- A user authenticates on the Traceability platform (1st connection ; the 
user is invited to create an account) 

2- A user selects the object whose Traceability Record should be enriched. 
This object can be an AI model, an Image, a subset of an image. 

3- The user can select a list of data to be declared as contributing to the 
traceability, which are ingested by batch into the Traceability service in 
order to update the current Traceability Record: 

- /* As the idea is not to upload the contributing data, we must 
address how the relevant attributes are extracted from the input 
and by who, in order to be safely sent to the traceability record. */ 

 

Querying a Trace Record Scenario 

Based on the usage of a Dataionics user, a 1st scenario would be about Querying 
a Trace Record, as follows: 

1- A user authenticates on the Traceability platform (1st connection; the 
user is invited to create an account) 

2- A user selects the object to be verified thanks to its unique Id within the 
traceability environment, resulting in the loading of the Trace Record of 
that object. This object can be an AI model, an Image, a subset of an image. 
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An alternative way is that the Traceability service allows the upload of a 
Trace record previously exported.  

In that case, the Trace Record is read and checked for genuineness and 
integrity and permissions. 

3- Once the Trace Record is made available, the user is entitled to perform 
queries about the data used to train the model, such as: 

- The number of data used  
- The Spatial Coverage of the input data, to be displayed in the 

Traceability Tool GUI, and exportable in GeoJSON format 

3. Conclusion 
The document presents two complementary use cases of traceability in the 
context of Earth observation data. 

The first use case focuses on the application of machine learning models (e.g., 
Random Forest) in agriculture. While rooted in a specific domain, it represents a 
typical ML workflow, covering data acquisition, processing, as well as model 
training and validation. The second use case is more general and refers to AI 
solutions at large, addressing both the models themselves and the processes of 
feeding them with data. Together, the two use cases illustrate the full spectrum 
of traceability needs in practice. 

Both scenarios highlight common critical aspects: the necessity of tracking input 
data and their metadata, including processing levels, baselines, and 
transformations. In particular, it is essential to maintain traceability of key input 
attributes such as time range, geographical coverage, and data origin, as they 
directly impact the validity and reproducibility of results. 

Moreover, both use cases emphasize two complementary layers of traceability: 
the data input layer (covering the characteristics and provenance of input data) 
and the model layer (covering design, training, and performance). Ensuring 
consistency and transparency across both layers is a prerequisite for trustworthy 
AI and ML applications. 

The proposed solution provides traceability independent of specific ML and AI 
vendors. This makes it reliable, repeatable, and resilient to technological changes, 
thereby enhancing its practical value in the context of Earth observation data. 


